Espacio CONAMA I//OVA

Cadena de valor viable, segura y sostenible de producción de PHBV para aplicaciones de envasado de alimentos

José Antonio Plaza
Responsable de Innovación y Proyectos
CETEC – Centro Tecnológico del Calzado y del Plástico

#CONAMA2024

Cadena de valor viable, segura y sostenible de producción de PHBV para aplicaciones de envasado de alimentos.

Proyecto ViSS → https://viss-project.eu/

José Antonio Plaza

Responsable de Innovación y Proyectos // ViSS Project Coordinator. CETEC – Centro Tecnológico del Calzado y del Plástico

— Breve presentación de CETEC.

— Descripción general del proyecto ViSS.

— Contexto técnico del proyecto.

___ Solución técnica ViSS.

CETEC- Centro Tecnológico del Calzado y del Plástico

Somos un centro tecnológico que funciona como asociación sin ánimo de lucro. Nuestro principal objetivo es realizar actividades de investigación y desarrollo en el sector del plástico y el calzado.

En CETEC trabajamos al servicio de empresas, desde fabricantes de materiales hasta convertidores de plásticos, recicladores y usuarios finales, brindando soluciones tecnológicas y apoyándolos para lograr un alto rendimiento y sostenibilidad de los materiales con los que trabajan.

[CETEC- Centro Tecnológico del Calzado y del Plástico

Nuestras áreas de trabajo son:

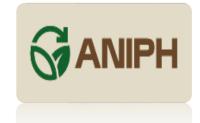
- Investigación en calzado.
- Investigación en materiales avanzados.
- Sostenibilidad y circularidad.
- Biotecnología.

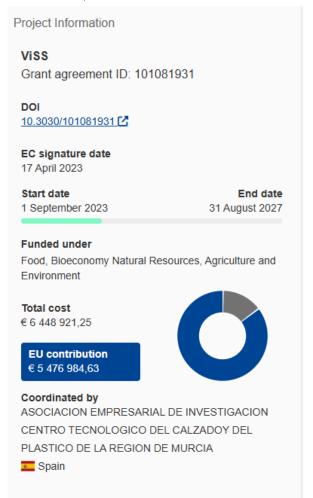
Nuestros **servicios**:

- Laboratorio de plásticos.
- Laboratorio de calzado.
- Planta piloto de plásticos.
- Asesoramiento técnico.
- Asesoramiento en sostenibilidad.
- Transformación digital.
- Vigilancia tecnológica.

2014-2020

2021-2024







Portada de la página web proyecto ViSS

Νō	Participant organisation name/Main role	Short n.	Type	Country
1	Centro Tecnológico del Calzado y del Plástico (Coordinator) - Technical aid across ViSS value chain; ICT platform; Demo Plant engineering and scale-up; End of life assessment	CETEC	RTO	ES
2	Cetec Biotechnology, S.L PHBV producer	CETBIO	SME	ES
3	VTT Technical Research Center of Finland Ltd - PHBV formulator; Sustainability assessment	VTT	RTO	FI
4	Iris Technology Solutions, S.L VFAs production from residues; Sorting strategy for recycling	IRIS	SME	ES
5	Helian Polymers PHVB Compounder & bioplastic converter at small scale	HP	SME	NL
6	Idener Research & Development A.I.E. – PHBV production process modelling; Safety assessment	IDE	RTO	ES
7	Universidad de Alicante - Ecotoxicology assessment	UA	UNI	ES
8	Propagroup SpA - PHBV converter by extrusion and thermoforming	PROPA	SME	IT
9	Asociación de Investigación de la Industria Textil – Technical aid across PHBV textile value chain and recyclability	AITEX	RTO	ES
10	Beaulieu International Group N.V PHBV converter by spinning and weaving	BIG	IND	BE
11	Golosinas Vidal - Candy residues provider; Candies packaging validation as end user	VIDAL	IND	ES
12	Tecnoalimenti S.C.P.APoultry residues provider; Regulations and policy assessment; Packaging validation	TCA	RTO	ΙΤ
13	Senior Europa, SL (Kveloce I+D+i) - SSH integration; Social and economic assessment; Public engagement	KVC	SME	ES
14	Fondazione ICONS - Project Communication, dissemination and exploitation; Open access	ICONS	NPO	ΙΤ
15	University of Birmingham UoB - PHBV formulator	BHAM	UNI	UK

Consorcio ViSS

La progresiva sustitución de los productos de consumo elaborados a partir de plásticos de origen fósil por otros materiales alternativos es una estrategia que se ha demostrado eficaz parta contribuir a la descarbonización de la sociedad.

En este contexto los **plásticos biobasados** o también llamados bioplásticos son una solución sumamente interesante.

Los plásticos biobasados son aquellos plásticos producidos a partir de productos vegetales y/o fuentes biológicas renovables.

Los plásticos biobasados pueden ser biodegradables o no.

Uno de los plásticos biobasados más prometedores son la familia de los **PHAs** (polihidroxialcanoatos), concretamente uno de los miembros de la familia, el **PHBV** (poly 3-hydroxybutyrate-co-3-hydroxyvalerate) destaca por sus excelentes propiedades para aplicaciones flexibles incluyendo envasado de alimentos.

3.- Contexto técnico del proyecto.

	Biobasado	Biodegradabilidad					Sintetizado por	
	OK biobased	Ambiente Marino	Agua dulce	Suelo	Compost industrial	Compost doméstico	la naturaleza	
BioPBS	V	×	X	×	V	v	×	
PLA	V	×	X	_	V	_	×	
PBAT	×	×	X	_	V	_	×	
PBSA	×	×	X	V	V	V	×	
TPS	>	_	-	V	V	v	V	
PEF	V	×	X	×	V	V	×	
PHA	V	V	V	V	V	V	V	

♥: Biodegradabilidad demostrada; -: Biodegradabilidad demostrada bajo condiciones específicas o para grados específicos de biopolímeros; 🗶 Biodegradabilidad no demostrada.

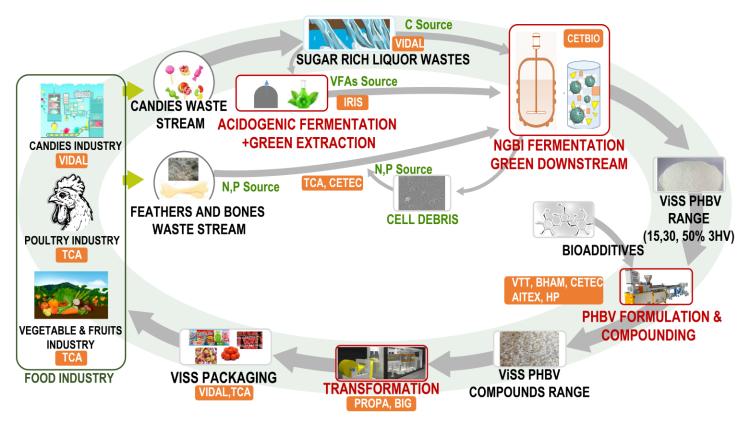
Condiciones ambientales: Medio marino (temperatura 30°C, 90% biodegradación en un máximo 6 meses); Agua dulce (temperatura 21°C, 90% biodegradación en un máximo de 56 días); Suelo (temperatura 25°C, 90% biodegradación en un máximo de 2 años); Compost industrial (temperatura 58°C, 90% biodegradación en un máximo de 6 meses); Compost doméstico (temperatura 28°C, 90% biodegradación en un máximo de 12 meses).

Sintetizado por la naturaleza: TPS (Producido a partir de almidón vegetal y plastificantes), PHA (Producido por microorganismos).

No sintetizado por la naturaleza (polimerización): BioPBS (Polimerización de ácido succínico procedente de recursos naturales y 1,4-butanodiol); PBAT, PBSA (Reacción sintética de poli-condensación); PLA (Poli-condensación de ácido láctico y/o Polimerización de láctica con apertura del anillo); PEF (Polimerización de ácido furandicarboxílico procedente de azucares naturales en presencia de etilenglicol).

¿Cuáles son las principales limitaciones de los PHBV comerciales?

- 1) Elevados costes de producción como consecuencia de:
 - I. Altos costes de las materias primas convencionales (hasta el 50%).
 - II. Necesidad de uso de costosos precursores para obtener grados flexibles.
 - III. Bajos rendimientos de producción con altos consumos energéticos y elevada inversión.
 - IV. Procesos de extracción costosos y con alto impacto.
- 2) Dificultades de procesado y propiedades mecánicas pobres.
- 3) Uso de mezclas de biopoliésteres (compounds con PBS, PBSA, PBAT, ...) para obtener las propiedades y flexibilidad apropiadas. Esta estrategia dificulta la biodegradabilidad.
- 4) Imposibilidad de reciclado mecánico.



Solución técnica que planteamos en el proyecto ViSS:

Creación de una cadena de valor segura, sostenible y escalable para la producción de PHBV, utilizando como materias primas residuos de industrias agroalimentarias.

Objetivos principales:

- Optimizar los procesos de producción.
- Demostrar la idoneidad del material para fabricar envases aptos para productos agroalimentarios.
- Demostrar la biodegradabilidad y la reciclabilidad de los PHBV.

Enfoque técnico del proyecto ViSS

Estrategia para alinear los desarrollos con las necesidades del mercado

Estrategia para facilitar la adopción en el mercado de la solución ViSS.

Recabar opinión e implicar a todas las partes interesadas a la vez que se adopta una estrategia SSbD (diseñado bajo criterios seguros y sostenibles).

Una herramienta clave del proyecto ViSS es la **ICT Platform**. Esta herramienta permite:

- Trazabilidad.
- Evaluación y facilidad de toma de decisiones.
- Acceso a información para el público en general.

Propuesta de ViSS para minimizar las limitaciones de los PHAs comerciales.

- 1) Elevados costes de producción:
 - I. Uso de residuos y subproductos como materias primas para la producción de PHBV con alto contenido de 3HV (15%)
 - II. Uso de residuos y subproductos para obtener los precursores necesarios para aumentar el contenido en 3HV (30%).
 - III. Viabilidad del uso de energía renovables para la producción de PHBV.
 - IV. Uso de reactores de plástico en lugar de los convencionales.
- 2) Dificultades de procesado y propiedades mecánicas pobres. Uso de aditivos biobasados para facilitar la procesabilidad sin poner en riesgo la biodegradabilidad.
- 3) Uso de mezclas de biopoliésteres. Uso de mezclas de PHAs (distintos grados de PHBV u otros PHAs) para lograr un rango adecuado de propiedades y garantizar la biodegradabilidad.
- 4) Imposibilidad de reciclado mecánico. El PHBV con alto contenido en 3HV es potencialmente reciclable.

Más información del proyecto en:

https://viss-project.eu/

¡GRACIAS!